Площадь боковой поверхности разных пирамид. Правильная пирамида. Определение Боковая площадь пирамиды правильной




Введите количество сторон, длину стороны и апофему:

Определение пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор

Стоит остановиться на определении некоторых составляющих пирамиды.

У нее, как и у других многогранников, есть ребра . Они сходятся к одной точке, которая называется вершиной пирамиды. В ее основании может лежать произвольный многоугольник. Гранью называется геометрическая фигура, образованная одной из сторон основания и двумя ближайшими ребрами. В нашем случае это треугольник. Высотой пирамиды называется расстояние от плоскости, в которой лежит ее основание, до вершины многогранника. Для правильной пирамиды существует еще понятие апофемы - это перпендикуляр, опущенный из вершины пирамиды к её основанию.

Виды пирамид

Существуют 3 вида пирамид:

  1. Прямоугольная - та, у которой какое-либо ребро образует прямой угол с основанием.
  2. Правильная - у нее основание – правильная геометрическая фигура, а вершина самого многоугольника является проекцией центра основания.
  3. Тетраэдр - пирамида, составленная из треугольников. Причем каждый из них может быть принят за основание.

Формула площади поверхности пирамиды

Для нахождения полной площади поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.

Самой простой является случай правильной пирамиды, поэтому нею мы и займемся. Вычислим полную площадь поверхности такой пирамиды. Площадь боковой поверхности равна:

S бок = 1 2 ⋅ l ⋅ p S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p S бок = 2 1 ​ ⋅ l ⋅ p

L l l - апофема пирамиды;
p p p - периметр основания пирамиды.

Полная площадь поверхности пирамиды:

S = S бок + S осн S=S_{\text{бок}}+S_{\text{осн}} S = S бок + S осн

S бок S_{\text{бок}} S бок - площадь боковой поверхности пирамиды;
S осн S_{\text{осн}} S осн - площадь основания пирамиды.

Пример решения задачи.

Пример

Найти полную площадь треугольной пирамиды, если её апофема равна 8 (см.), а в основании лежит равносторонний треугольник со стороной 3 (см.)

Решение

L = 8 l=8 l = 8
a = 3 a=3 a = 3

Найдем периметр основания. Так как в основании лежит равносторонний треугольник со стороной a a a , то его периметр p p p (сумма всех его сторон):

P = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9 p=a+a+a=3\cdot a=3\cdot 3=9 p = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9

Тогда боковая площадь пирамиды:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 8 ⋅ 9 = 36 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 8\cdot 9=36 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 8 ⋅ 9 = 3 6 (см. кв.)

Теперь найдем площадь основания пирамиды, то есть площадь треугольника. В нашем случае треугольник равносторонний и его площадь можно вычислить по формуле:

S осн = 3 ⋅ a 2 4 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4} S осн = 4 3 ​ ⋅ a 2

A a a - сторона треугольника.

Получаем:

S осн = 3 ⋅ a 2 4 = 3 ⋅ 3 2 4 ≈ 3.9 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4}=\frac{\sqrt{3}\cdot 3^2}{4}\approx3.9 S осн = 4 3 ​ ⋅ a 2 = 4 3 ​ ⋅ 3 2 3 . 9 (см. кв.)

Полная площадь:

S = S бок + S осн ≈ 36 + 3.9 = 39.9 S=S_{\text{бок}}+S_{\text{осн}}\approx36+3.9=39.9 S = S бок + S осн 3 6 + 3 . 9 = 3 9 . 9 (см. кв.)

Ответ: 39.9 см. кв.

Еще один пример, немного сложнее.

Пример

Основанием пирамиды является квадрат с площадью 36 (см. кв.). Апофема многогранника в 3 раза больше стороны основания a a a . Найти полную площадь поверхности данной фигуры.

Решение

S квад = 36 S_{\text{квад}}=36 S квад = 3 6
l = 3 ⋅ a l=3\cdot a l = 3 ⋅ a

Найдем сторону основания, то есть сторону квадрата. Его площадь и длина стороны связанны:

S квад = a 2 S_{\text{квад}}=a^2 S квад = a 2
36 = a 2 36=a^2 3 6 = a 2
a = 6 a=6 a = 6

Найдем периметр основания пирамиды (то есть, периметр квадрата):

P = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 24 p=a+a+a+a=4\cdot a=4\cdot 6=24 p = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 2 4

Найдем длину апофемы:

L = 3 ⋅ a = 3 ⋅ 6 = 18 l=3\cdot a=3\cdot 6=18 l = 3 ⋅ a = 3 ⋅ 6 = 1 8

В нашем случае:

S квад = S осн S_{\text{квад}}=S_{\text{осн}} S квад = S осн

Осталось найти только площадь боковой поверхности. По формуле:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 18 ⋅ 24 = 216 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 18\cdot 24=216 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 1 8 2 4 = 2 1 6 (см. кв.)

Полная площадь:

S = S бок + S осн = 216 + 36 = 252 S=S_{\text{бок}}+S_{\text{осн}}=216+36=252

Ответ: 252 см. кв.

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

Правильный треугольник

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

S = (а 2 * √3) / 4.

Квадрат

Формула для вычисления его площади самая простая, здесь «а» - снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

S = (n * а 2) / (4 * tg (180º/n)).

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение - «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

S = n/2 * в 2 sin α.

Задача № 1

Условие. Найти общую площадь пирамиды, если в его основании лежит со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Ответ. 10√3 см 2 .

Задача № 2

Условие . Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ . Искомое значение 267,576 мм 2 .

Задача № 3

Условие . У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2).

Ответ. 96 см 2 .

Задача № 4

Условие. Дана правильная Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2)=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания - 726√3 см 2 , боковой поверхности - 3960 см 2 , вся площадь - 5217 см 2 .

Треугольной пирамидой называется многогранник, в основании которого лежит правильный треугольник.

В такой пирамиде грани основания и ребра боковых сторон равны между собой. Соответственно площадь боковых граней находится из суммы площадей трех одинаковых треугольников. Найти площадь боковой поверхности правильной пирамиды можно по формуле . А можно произвести расчет в несколько раз быстрее. Для этого необходимо применить формулу площади боковой поверхности треугольной пирамиды:

где p – периметр основания, у которого все стороны равны b, a – апофема, опущенная из вершины к этому основанию. Рассмотрим пример расчета площади треугольной пирамиды.

Задача: Пусть дана правильная пирамида. Сторона треугольника, лежащего в основании равна b = 4 см. Апофема пирамиды равна a = 7 см. Найдите площадь боковой поверхности пирамиды.
Так как по условиям задачи мы знаем длины всех необходимых элементов, найдем периметр. Помним, что в правильном треугольнике все стороны равны, а, следовательно, периметр рассчитывается по формуле:

Подставим данные и найдем значение:

Теперь, зная периметр, можем рассчитывать площадь боковой поверхности:

Чтобы применить формулу площади треугольной пирамиды для вычисления полного значения, необходимо найти площадь основания многогранника. Для этого используется формула :

Формула площади основания треугольной пирамиды может быть и другой. Допускается применение любого расчета параметров для заданной фигуры, но чаще всего это не требуется. Рассмотрим пример расчета площади основания треугольной пирамиды.

Задача: В правильной пирамиде сторона лежащего в основании треугольника равняется a = 6 см. Рассчитайте площадь основания.
Для вычисления нам требуется только длина стороны правильного треугольника, располагающегося в основании пирамиды. Подставим данные в формулу:

Довольно часто требуется найти полную площадь многогранника. Для этого потребуется сложить площадь боковой поверхности и основания.

Рассмотрим пример расчета площади треугольной пирамиды.

Задача: пусть дана правильная треугольная пирамида. Сторона основания равна b = 4 см, апофема a = 6 см. Найдите полную площадь пирамиды.
Для начала найдем площадь боковой поверхности по уже известной формуле. Рассчитаем периметр:

Подставляем данные в формулу:
Теперь найдем площадь основания:
Зная площадь основания и боковой поверхности, найдем полную площадь пирамиды:

При расчете площади правильной пирамиды стоит не забывать о том, что в основании лежит правильный треугольник и многие элементы этого многогранника равны между собой.

Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.

Если в основании лежит квадрат, то пирамиду называется четырехугольной , если треугольник – то треугольной . Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот способ расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен:
Теперь можно найти боковую площадь пирамиды:

Площадь правильной треугольной пирамиды


Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными способами. Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет:
Подставляем значения в формулу:
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:

Площадь усеченной пирамиды


Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:

Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.

Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.
Для начала найдем периметр оснований. В большем основании он будет равен:
В меньшем основании:
Посчитаем площадь:

Определение 1 . Пирамида называется правильной, если её основанием является правильный многоугольник, при этом вершина такой пирамиды проецируется в центр ее основания.

Определение 2 . Пирамида называется правильной, если ее основание - правильный многоугольник, а высота проходит через центр основания.

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема . На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды - это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной , четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр .

Свойства правильной пирамиды

Для решения задач необходимо знать свойства отдельных элементов, которые в условии обычно опускаются, так как считается, что ученик должен это знать изначально.

  • боковые ребра равны между собой
  • апофемы равны
  • боковые грани равны между собой (при этом, соответственно, равны их площади, боковые стороны и основания), то есть они являются равными треугольниками
  • все боковые грани являются равными равнобедренными треугольниками
  • в любую правильную пирамиду можно как вписать, так и описать около неё сферу
  • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно π/n, где n - количество сторон многоугольника основания
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • около основания правильной пирамиды можно описать окружность (см. также радиус описанной окружности треугольника)
  • все боковые грани образуют с плоскостью основания правильной пирамиды равные углы
  • все высоты боковых граней равны между собой

Указания к решению задач . Свойства, перечисленные выше, должны помочь в практическом решении. Если требуется найти углы наклона граней, их поверхность и т. д., то общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для нахождения отдельных элементов пирамиды, поскольку многие элементы являются общими для нескольких фигур.

Необходимо разбить всю объемную фигуру на отдельные элементы - треугольники, квадраты, отрезки. Далее, к отдельным элементам применить знания из курса планиметрии, что существенно упрощает нахождение ответа.

Формулы для правильной пирамиды

Формулы для нахождения объема и площади боковой поверхности:

Обозначения :
V - объем пирамиды
S - площадь основания
h - высота пирамиды
Sb - площадь боковой поверхности
a - апофема (не путать с α)
P - периметр основания
n - число сторон основания
b - длина бокового ребра
α - плоский угол при вершине пирамиды

Данная формула нахождения объема может применяться только для правильной пирамиды:

, где

V - объем правильной пирамиды
h - высота правильной пирамиды
n - число сторон правильного многоугольника, который является основанием для правильной пирамиды
a - длина стороны правильного многоугольника

Правильная усеченная пирамида

Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой . Это сечение для усеченной пирамиды является одним из её оснований.

Высота боковой грани (которая является равнобокой трапецией), называется - апофема правильной усеченной пирамиды .

Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.

  • Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды
  • Все грани правильной усеченной пирамиды являются равнобокими (равнобедренными) трапециями

Примечания

См. также: частные случаи (формулы) для правильной пирамиды:

Как воспользоваться приведенными здесь теоретическими материалами для решения своей задачи: